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Y Abstract
‘D ~ ‘
>, J.D. Kettele [1], .using dynamic programming, developed a simple algorithm (KA) for
» ~
"-; the optimal redundancy problem in reliability and life testing problems with a single
:"f . . R - >
,g o constraint. .E. Proschan and T.B. Bray [2] gave a generalization of Kettele's dynamic
4 jj: programming algorithm to inciude multlple constramts To solve a much broader class of
s T T -
.jj optimization problems than in [1}], R.E. Barlow andP" Proschan generalized the Kettele
-‘I
¥ A .
o’ algorithm (GKA) to applv to strictly increasing separable function problems with a single
[ ) -
o constraint -[3].
o -
:;.',- in this paper, we consider‘a still more general optimization model and develop a Further
[ f .
‘--' g “
i . Generalized Kettele Algorithm (FGKA) to apply to multiple constraints, etc. As an example, an
j integer Lexicographic programming model will be solved.{toroliary 1, section 2).¢ Further-
[l
‘W
ﬁ.,‘: more, another form of the more general optimization model is pointed out in section 4 of the
,\.' 4 -
%’ paper. (-
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1.__Introduction

Kettele [1] presents an algorithm for allocating redundancy so as to maximize system
reliability without exceeding a specified cost. Specifically, a system consisting of k "stages" is
considered. The system functions if and only if each stage functions. Stage i consists of n; (to be
determined) units of type i in paraliel, so that stage functions if and only if at least one of n;
units of type i functions, i=1,2,..., k. Suppose unit i has a"cost" ¢j, i=1,...,k. A
unit of type i has probability p; of functioning, independently of the functioning or
nonfunctioning of the other units of the system. Thus system reliability is given by

P (n) =I'I:::< (’1 -(1 ~pﬂn')- Then the problem considered in [1] is

max lk'[(1 -1 -pi)n'),
s.t. Ek;CiniSC.

imt (1)
nj 2 0, integer,
where ¢ is a limit "cost".

Proschan and Bray [2] generalize KA to solve the more general problem of maximizing

system reliability without exceeding any of several linear constraints, i.e., specifically,

max f[(1 e

im1

K
st Yceijnisc, (j=1.2,...,9

im1
nj 2 0, integer,
where ¢;j is the "cost” of the unit i of the jth type,i=1,...,k; j=1,...r and cj is the
limit "cost" of the jth type. As an example, the first type of cost might be money, the second
weight, the third volume, the fourth population rate.

Barlow and Proschan (3] then give a Generalized Kettele Algorithm to solve an

optimization model more general than in [1] as follows. Suppose x1,...,xx are k variables
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called "decision variables”; xj€ Sj= {xim<xi(2)< } i=1,. ..,k LetXi=fxy....x), i=1,
, K. Assume fi, ..., fk are strictly increasing functions, with yq(x1) = fy (x1),

y2(Xd =t2lys, x2), yalka)=talya, xah - - - o Yic K= filyir, xi)- Similarly, assume g1, .. ., gk are

strictly increasing functions, with z,(x1) = g1(X1), Z2(X3 = g2(21, X2),

zalXd =03 (22, %3, ..., 2 (Xi)=g (2k.1, X It is suggestive to call X; an "allocation” of order i,

yi a "payoff” of order i, and z;j a "cost" of order i (i=1, ..., k) even though the model is

more general than these terms would indicate.

The Barlow and Proschan (B-P) model is

max YR{;k),

st zfxd <e, (2)

Xk= (X0 -, X )€S1X, ..., XSy,
where ¢ is a limit "cost". In this model there is only a single constraint. The cost zx may not
be a sum of linear functions c¢jxj, j=1,..., k. Itis strictly increasing in the number of
spares of each type.

B-P gave some examples (see examples and exercises, [3]) and pointed out that a great
many other models requiring optimization subject to a constraint arising in reliability, and
more generally in operations research, are special cases of the general optimization model.
Such problems may be solved by the Generalized Kettele Algorithm [3].

In this paper, we propose a more general optimization model and develop an associated

Further Generalized Kettele Algorithm (FGKA). Thereby, the optimal problems which can be

solved by FGKA will not confine to a simple numerical objective function or a single constraint.
Example 1: An integer Lexicographic Problem

max ("R y R v o)

s.t.

zx [)sc i=1,2,....m, (3)

W .;\' it




where c¢jisaconstant, i=1,...,m; Xi = (X{ ,...,x), and xjis a real variable,

Li=1,...,Kk f(,”, e fff) all are strictly increasing functions with real values, and

Vi) = ). y2 Ra= 120y g Bg= v =1 hat 0l allare
strictly increasing functions with real values, and Z:j)(x1) = ggj)lx1). Z(zj)(§2)=g(zn (z:j).xg), -
20 (‘ik)=gs)(zf‘j_)1.xk), 2P g2 xMiz2, =1, m; (y.(:), e ys)) belongs to I|-dimensional
real vector space R! with the Lexicographic ordering.

The Lexicographic problem is a special case of our still more general optimiztion modei.

And as we know, an integer bottleneck problem and an integer time-cost problem are in some

sense special cases of the integer Lexicographic problems.
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> Still More G | Optimization Model and FGKA

Now, let us give the still more general optimization model. Suppose S; is a countable
well ordered set, S;= {xi('.)< fo)< e ) i=1,2,...,k. Y, Z both are ordered sets. In Z there
exists a maximal element zg (or o). Let xj represent a variable called a "decision" variable,
xi € Si, and Xi= (xy,Xp,..., xi} Letfy ,f2,...,fc; 91,92, ...,0k all be strictly increasing
functions, with y1(x1) = f1(x1), yaX2)=f2ly+.x2), ..., yi{®k)=fx{yi1. X} andyie Y; zy(x1)
= g1(x1), Zal¥d=02(z1.x2),..., zdXl=0uzicr. x) and zie Z, i=1,2,... Kk fori>1,
9i(2zo, Xi) = 20, Zi-1= gGi(zi-1, x{1).

Call xi an allocation of order i, yi a payoff of order i, and z; a cost of order i,
i=1,2,...k

The still more general optimization model is

Max yy (X,

s.t.
z [xd<c, (4)

where ¢ € Z\{zo}, Xk=(Xy v Xz oo - . Xk Xj€ §j,j=1,2,...,k

Assume that (4) and z>¢, j=1,...,k all have solutions.
Definition1: Allocation Xi dominates allocation Xi' if

() Yi(;i)>Yi(;i')and zi(i'a)sm(ia')<zo.or

(ii) yi('ii]=yi('ii')and zi('ia}<zi(L§i')<z°,or

(iii) zi(;{Lzo
We write ;i;;i' . We also say the corresponding payoff-cost pair (y;, zj) dominates
(y, z;)andwrite lyi, zi);(y;, z.) .

Definition 2: Xi is called an undominated allocation of order i if there exists no xi such that

Xi >Xi . We also say the corresponding payoff-cost pair (y;, zj) is undominated.

e e A A AR 8 o A AT, T L T LT i e ;i'\&';:- X 'Mﬁ % E‘B}m ‘&.r' ﬁm&m
3 " {\\ ok, Jhul\:& \'t& % e,
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Definition 3: A complete sequence of undominated allocations of order i (ending in xi , say) is

. By - )
a sequence of undominated allocations xi ,...,x; each of order i, such that

(i) yi(iim)s . .Syi(;i(S),

) o)
(i) zi(xi )s....szi(xa ) and
(iiiy 1f x; is undominated and yields a payoff-cost pair distinct from those of

- 8 (8

20 3 then wf)2y) and 212 2{7).

, 8 @ _s )
We call the corresponding sequence (k’i VZj ) <o (Yi ) Zj ) a complete undominated sequence of
payoff-cost pairs of order .
We now present an algorithm to solve this more general optimization model (4).

shall call it the Further Generalized Kettele Algorithm (FGKA).

(i _ @ (i) . (s {s1+1)
Step 1: Compute y1 —f ( )) 1|=g1(x1') for i=1,2,...,s1, where 2z, <¢, and z, '>c.
There exists such sq1 since z1(x1) = zx(x1, x2{1), ..., x(1)y and z¢ < ¢, z1 > c both have
solutions. (y1 , (1)) (yﬂ"’, z(,s‘)) constitute a complete sequence of undominated payoff-cost

pairs of order 1 not violating the cost constraint.
(O . .
Step 2: Compute Y2”—f2()’1 ' ) zg.,—gg(z1 .Xz}) for i=1,2,...,s1;j=1,2,... such that
zpjj < c. Enter the payoff-cost pair (yzjj, Z2ij) in row i, column j of a table of payoff-cost
pairs.
. My . .
Step 3: The lowest cost undominated pair (Yz .22) in the table is clearly (ya11, Z211) if 2245 €
c. If 2549 > ¢, there is no solution.
. @ _@) . o -
To determine (Y2.22), find (y2ij, Z2;j) such that yo;>y2 with zx minimum among
entries satisfying this inequality. If several entries of identical cost qualify, choose the highest
payoff yy;. If several entries of identical cost and identical highest payoff qualify, choose one

. . . @ _@
at random, since all are equally cost-effective. The payoff-cost entry so chosen is (Yz 22 )

Continue in this fashion, i.e. having found (Yz .Zz) then (yg*",zf,_“”) is the pair

(I - . s - .
[v2i;, Z2ij) such that Yai>Y2 with zp; minimum among pairs satisfying this inequality. In case

of ties, follow the rules for breaking ties described above.

T RO
\ !h %, ?nl?e |?t" SISO ) 'v.&.'c‘« 0'0.' el
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Stop at ()lz2 -Zzz), where s, is determined so that Zzz)s c,while z;°" ">c. Such $2

exists if there is a solution to (4).
M _a ) 82 62 . i .

The sequence (Yz 22 , (yg 22 ) obtained this way constitutes a complete sequence
of undominated payoff-cost pairs of order 2 not exceeding the cost limit c.
Step 4: Proceeding in a similar fashion using the payoff-cost pairs (yaij. Z3ij), where

(M _ (i) , :

Yaij =f (y?_ za) Z3ij= ga(zz ,Xs) for i=1,2,...,s82; j=1,2,...,suchthat z; <c, obtain
a complete sequence of payoff-cost pairs not violating the cost constraint. Continue in this

fashion until at the kih stage, arrive at the complete sequence of undominated payoff-cost pairs

M sy _6 6 1)
(yk ,zk),..., (yk"),zk')) where zk“)sc whilez, *" > c.

Step 5: Finally, y,(f v is the maximum payoff achievalbe under the cost constraint; the

CH) )
corresponding cost is zk . The allocation x = yielding the payoff-cost pair (Yk ,z: “) is the
solution to (4).

. [ 60 6 _— . .
Theorem 1. The payoff-cost pair (Yk D ") and the allocation x > obtained using the

‘sda

(' FGKA is the solution to the more general optimal model (4). That is, it is the maximum payoff
‘i . . . 6 .

N achievable with corresponding cost 2y “<¢ , the cost constraint.

e

::;-:I Proof. The argument of the proof is similar to that of the original theorem about the GKA (p.
-

s

!

221, [3]). In the original proof two lemmas are used. They are as follows.

Lemma 4.5. (a) Every payoff-cost pair of order 2 obtained by GKA is undominated. (b)

4 %]
AL

Yo

Every undominated payoff-cost pair of order 2 may be obtained by the GKA.

.‘nﬁ
'

Lemma 4.6. Let (y2, 2) 3 (v2', 22), Y3 = f5 (Y2, Xa), 23 = Q3 (Z2, Xa), ¥a' = fa(Y2', X)),

n‘\i‘

B ral

and z;' = g3 (22, X3). Then (ya, 23)  (ys' 23').

I RID ALK

.’3““:'
AR

»1 @
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The two lemmas are correct for FGKA. The proof of the former is almost word for word
repeat of the original lemma proof. The proof of the Iatter is little different from the original.
By the hypothesis of Lemma 4.6,

() vya>ys andz,<2, <z, O

(i) ya2=y5 and zp< z,' < zq, OF

(i) z3' = zq.

In cases (i) and (ii), we know (yj;, z3) b3 (ya', 23'). In case (iii), this also holds since g; is
monotone and z3' = g;5(22', Xa) = Zo. Hence, Lemma 4.6 holds for FGKA.

Using the two new lemmas and repeating the argument of the proof of the original

theorem 4.7 word by word, we get a proof of Theorem 2.

Q.ELD.

Now we show that the general optimization model (B-P) under muitiple constraints is a
special case of the still more general optimization model (4).

Theorem 2. The problem

max Yk(;k)’

s.t.
2y e, i=1,2,....m, (5)
Xk={X1,%2,...,%)€S1XSzX...xSy,

where S, yi, Xj, X}, Y, z,w all are as in the more general optimization model; 2Z{) is an
ordered set without assuming a maximal element, is a special case of the still more general
optimization model (4).

Proof. Let Zo=Z(MW x Z2 x ... xZM. Define an equivalence relation = among elements of Z, as
follows. For aj, bje Z), i=1,2,...,m,

(a4, 82, ...,8n) = (by, by, ..., by)

o Wt
(OO



if and only if either

i ai>ciforsomei=2,3,...,m,andbj>0jforsomej=2,3,...,m,or

() aj<ciandbj<gcj, i=2,3,...,m,anday =Db,.
Thus we get a collection Z of classes of equivalent elements of Z,. Denote the class including (¢4,
Ca ..., Cm) byC, (ZS)(;k),Zf)‘;k), N ik))by zxi). Define

(ay, a2, . ..,am) > (by, bo, ..., b
if and only if either

() (ay,az ...,a8m) =20# (by,bs ...,bn), where 2z, is the class whose one of
components 2, 3, ..., m is greater than corresponding c;, or

(i) 2zo#(ay,@,...,ay) or (by, by ..., by), where a, > b,.
Then Z is an ordered set with a maximal element z,.

Here we do not distinguish a clas~ from its representatives.

So, (5) is equivalent to a (4) in which zx € Z, ¢c e Z\{zo}. Thatis, (5) is a special

case of (4).

Q.ED.

Similarly, we can prove corollary 1. In fact, it can be obtained as a conclusion of

Theorem 1 itself, also.
Corollary 1. The integer Lexicographic problem (3) is a special case of the more

general optimization model (4), or (5).
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AS 3. An Example ysing FGKA
~
(' Example 2. Fill Rate tlodel (compare it to [3], p. 209)
F -
:: max RN},
o
Fal s.t.
/ : 4
T ZniCiS Co,
‘ 3
s i=t (6)

ni > 0, integer, i =1, 2, 3, 4,

N R
&

! ’: where n = (n1, n2, n3, n4) is a spares allocation; ¢ is the price of part i, co is a spares
": budget constraint; wj is the weight of part i, wp is the limit weight of a spare parts kit, R(T
R
e is the fill rate, |
- l -1
7 4 n;-1 ).~1)~ Y A3
I r \ ( i 1) ARIESY
o an)=2ki Y —e YAl o
.- i=1 =0 I jml
): )
I where 2, ,=0. Here we assume that

L

4

t* ()  Demands for spares of type i at a maintenance depot is governed by a
‘:f_- Poisson process with demand rate A,;.
' (i) Enough repair facilities are available at the depot so that repair of a failed
: : unit is initiated as soon as it is received.
K,
; (iiiy The mean time to repair a failed unit of type i is w;.
D .
e
Av (iv)  The cost of purchasing nj units of type i is njc;.
-ﬁ" (v) There are k part types, i.e.,, i=1,2,...,k.
»:
5. In (6) there are two constraints, which says, that the budget is not to be exceeded nor is the
o allowed total weight (or volume).
-~
s
X
®
L
Ko
W
s
A.
N
L)
,:‘l
P :
Al . "y N Y ) AT Y XK TG S0 00 i
":'v .h'{li'.h‘. ."‘cp‘d‘!:l‘.l:."l‘!.u '.' *- -‘l‘.‘l'.\..:'l :'i !':‘!'l.g'h‘u';,g 0‘:’ 4" "!’ﬁ!:.:g".kQ'.‘.O'.!:"‘.O".’,'. |",‘o’!.|'..:' A% o‘.‘ o'“‘l. 2 L 'l':¢‘~%"’Q'o’!\’l‘t‘l’!‘l'v,:
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To solve the example, first let S;j={0,1,2,...}, Y the set R! of real numbers. To
define Z, first define an equivalence relation = in the 2-dimensional real vector space R2as
follows.

(Uq, ug) = (vyq, va)
if and only if either
(il uy>wg and vy > Wg, Or
(i) uq, vy Swg and ug = v,
Denote (uy, up) by 2o ifuy > wg. Thenlet Z be the collection of equivalence classes of elements
in R2. Define an order relation > in Z:
(Uy, Uz) > (vq, Vo)
if and only if either
()  uy>wgand vy <wg, or
(i) uy, vy SWg and up > v,.
Denote (wg, Co) by c.
The decision variables are to be the number of spares of the k different types, (n,, n,,

Na, N4). The functions of f; and g; of the more general model are given by

t,(n,) )‘ 2 ()\. 1)) —1101

(b i

nelt 1. _

fi(R,ni)=R+xlz l'l)l) e 71“]
j=0

gi(nq1) = (Wq Ny, €4 Ny),

gi ((wy €)), nj) = (w, ¢) + (wj nj, ¢ nj).

So, all f; are strictly increasing functions. And all g; are increasing in 2, strictly increasing

in Z\(zo}.

0 0 5% 0
" \ W i.o':.a B .- W ,g* 100

(X)
.. 0‘ l".‘...‘ . .‘. 2‘.. ||'..| ..D. ' |‘. A A’ "f’ I l @
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For example, consider the situation of a budget co = 1500 (in dollars), weight limit wg

= 100 (in kg), and demand, repair, weight and cost data as shown in Table 1.

Mean Time i
Par [zgemraﬁgugate to Repair kgf weight Dollar Cost | computed
a Failed Part of part, of part, YN
Type, i Ai v, Wi gi value: A; v
! .01 100 30 200 1.0
2 .02 150 10 100 3.0
3 .03 60 40 300 1.8
4 .01 200 5 250 2.0

Table 1. Input Data for Spares Allocation

Ka . -
To simplify the computation throughout, we drop the denominator to 21 A; in R(N) since

- . . Kk
it is constant throughout and just compute the fill rate numerator 3. _,A; R(n). where

0]

=4
e i=1,2,...,k

n-1
R =Y
j=0

The steps taken in carrying out FGKA are the following.

(1) Noting that nj=0, 1, 2, ..., in Step 1 we get

f,(n,)=)‘1"§";1 P“_"’)l e"‘°’=.01n§(l££ e’
o ! o I
and
g1(nq) = (wWq Ny, ¢ Ny) = (30ny, 200n4),
and

c = (wg, Co) = (100, 1500)

(N0 DS ' iyt e
RS ORI RS A W RN A

OO
Mt

W)
MONG

45 OO

-------




(y1(™M, z¢(M= (0, (0, 0)), (y11®, z1() = (.00368, (30, 200)),
_~j.' (y13), 243 = (.00736, (60, 400)), (y1®, z4(4)) = (.00920, (90, 600)).
~

_\. Heie 51 =4

o (2) Noting that np =0,1,2,...,in Step 2 and Step 3,

o w havd e o0 L 0

;‘ fo(R1, n2) = R + A2 § i e 022 I

; |

O
io' and

o g2((w,c), n2) = (w, ¢) + (10 n2 , 100 n2),

]

N

::: we get Table 2.

- The complete sequence of undominated payoff-cost pairs of order 2 is shown by
®

Zf'; ? S S »in Table 2. Here sp =9.

o

K< (3) Since n3 =0,1,2,...,in Step 4

) j ’

- wt Pavd -y, &g -8
C faR, ng) =R+ X —y & =R+.033 =

j=0 ' =0 1°

‘l‘:

-.':j and

N4

o ga((w. ¢), n3) = (W, c) + (40 n3 , 300 ng3),

i
! fa(R, na) = R + A4 nf (}"‘j:"” e *™=R+.01 2 (2 °’
. =
=
;, ga((w, c), ng) = (w, ¢) + (5 ng , 250 ng),
,: Thus we get Table 4.

ey,

P e

- —_ 4
a2 '.’L" . .') '.:'J‘.JN;'JEJ

we get the complete sequence of undominated payoff-cost pairs of order 1,

we obtain Table 3. Here s® = 9, i.e., the complete sequence of undominated payoff-cost pairs of
order 3 shown in Table 3 has 9 elements.

(4) Noting that ng =0,1,2,...,in _Step 4
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The complete sequence of undominated payoff-cost pairs of order 4 is
0,000 0,1,0,0; 0,2,0,0, 10,300
0,400 105,00 1,4,00; 1, 5, 0, 0;
2,4,0,0; 2,4,0,1; 2,40, 2; 1, 5, 0, 3.

(5) Finally, a solution of example 3 is
(ny, n2, n3, ng) = (1, 5, 0, 3).

with Max () = .02576.

.00368 | .00368 | .00468 | 00916 | .01304 | .01700 | .01941 | .02002 | .02045
(i) 1(30,200){(30,200) | (40,300) | (50,400) | (60,500) | (70,600) ,700)| (90.800) | (100,900)

n(i)
2

NS 1 2 3 4 5 6 7 8 9 10
FRN 00010 | .0o548 | .00996 | .01332 | .01533 | .01634 | .01677 | .01694 | 01699 | .01701
wC (0,0) | (10,100)| (20,200)| (30,300) | (40,400) | (50,500){ (60,600)| (70,700) | (80,800)| (90,900){(100,1000)
Y 0,0 0,1, 0,2 0,3 0,4 _] o5 0,6 0,7 0,8 0,9 0, 10
0 o |.o0010 | .00s48 | .00996 | .01332 | 01943 | .01634 | 01677 | .01694 | .01699| 01701
(0, 0) (0,0) |(10,100) | (20,200)| (30,300) | (40,400) 0,500) | (60,600)] (70,700) | (80,800)( (90,900)|(100,1000)
1

1,0 1.1 1,2 1,3 1,421 1 1,6 1.7

rd
1
2 2,0 2,1 2,2 2,3 2,4
.00736 [.00736 |.00834 | .01284 | .01732 | .02068
(60,400)| (60,400)| (70,500) | (80,600) | (90,700) |(100,800)
3 3,0 3,1
.00920 | .00920 | .01020
(90,600){(90,600) {(100,700)
Table 2 (y2ij, z2ij)
Notation: NS - number of spares, FRN - fil! rate numerator, WC - weight and cost.
D N L R R Rt AR K R
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N 0
e 3
o NS 0 1 2
FRN o 04559 .013885
WC (0, 0) (40, 300) (80,600)
0,0 0,0,0 0,0, 1 0, 0,2
0 0 .00496 .01389
(0,0) (0,0) (40, 300) (80,600)
ol 0, 1 0,10 l 0,1, 1 0.1,2
R .00100 .00100 .00596 01489
. .
:.:'o (10,100) (10,100) (50,400) (90,700)
' .
o 0,2 0,20 0,21 0,22
L 00548 00548 ¢ 01044 .01937
:;:.' (20,200) (20,200) (60,500) (100,800)
(
ol 0,3 0,3,0 0,3, 1
P .00996 .00996 01492
' () (30,300) (30,300) (70,600)
-t %2 0, 4 0, 4,0 0, 4,1
".: 01332 .01332 .01828
e (40,400) (40,400) (80,700)
% 0,5 0,5,0 0,5, 1
e .01533 01533 .02029
( o~ (50,500) (50,500) (90,800)
-:: 1, 4 11 4| 0
! ?_: 01700 .01700
. (70,600) (70,600)
1,5 1,5,0
‘:. .01901 .01901 P 3
br (80,700) (80,700)
) ::: 2,4 2,40 L
b .02068 .02068
s (100,800) (100,800)
o
& ,
™ Table 3 (yaij, 23ij)
‘ )
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e

l\‘i

S5
."! 1?
A0

% .
P 0

::: n4

O
o NS 0 ] 2 3 4 5 3
‘..— . RN 0 00135 | .00405 | .00675 | .008s5 | .00945 | .00981
Al

;'i' wWC (0,0) |(5,250) | (10,500)| (15,750) |(20,1000)](25,1250)|(30,1500)
t 0,0,0 10,000 }0,00.1{ 0,002 | 0,0,08 {0,004 |0, 005/ 00.0.6
50 0 0 Y|.00135 | .00405 | .00675 | .00855 | .00945 | 00981
\ ' (0,0) | (0,0)| {(5,250) | (10,500)} (15,750) | (20,1000)| (25,1250)| (30,1500)
\ oy1ro 0.1,0. 0111011 0.1,0,2 0,1,0,3 0'1,0’4 0'1'0'5

?»: .00100 [.00100} |.00235 | .00505 | .00775 | .00955 | .01045

o (10,100) |(10,10q) |(15,350) | (20,600) | (25,850) | (30,1100) (35,1350)

g‘-l 020 [0.2,0d [0,20,1 [ 0202 0,203 | 0204 | 0205

.00548 [00548] [.00683 | .00953 | .01223 | .01403 | .01493

g (20,200)| (20,20d) |(25.450) | (30,700) | (35.950) | (40,1200)|(45,1450)
a’.“C 030 10300 |030,1{ 0302 | 0303 |0304

o 00996 |.0099¢ |.01131 | 01401 | 01671 | .01851

™ (M (30,300) | (30,309){(35,550) | (40,800) | (45,1050 | (50,1300)

° z

s 3 04,0 [0,4,00[ |0,4,0,1 | 04,02 | 0,403 | 04,04
s .01332 {.01332) | .01467 | 01737 | .02007 | .02187
2 (40,400) |(40,400) |(45,650) | (50,900) | (55,1150) | (60,1400}

o 050 (0509 |0,50,1 | 0502 0503 | 0.5,0,4
.01533 |.01533] |.01668 |.01938 | .02208 | .02388

- {50,500) (so.socf) (55,750) | (60,1000)| (65,1250) | (70,1500)

s

N. 1'400 1.4,0. 1,4,0.1 1141012 1’4l013

:;:.:. 01700 | .0170q | .01835 | .02105 | .02375

:;;.: (70,600)}(70,60d) |(65,850) | (70,1100)] (75.1350)

j 15,0 {1504 [1501 ] 1502 | 1503

; .01901 | .01901 | .02036 | .0230 .02576

:‘Z- (80,700)|(80,700Q) | (75,950){ (80,1£0Q) (as.yf) :

.

e 2,40 | 2,400 | 2.4,0,1 /(,4.0, /

b 02068 | .0206¢ | 02203 .02473

¢ (100,800}(100,800)(85,1050) (90,1300)

N Table 4 (ysij, z4ij)

" x

SN

4, l*
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Another { the More G | Optimization Model

Corresponding to (1), consider an optimal design problem
K

min Y ¢in;

i=

s.t. ;1(1 -(1 -pi)ni)z R

o (7)
2 0, integer,
where R is a limit reliability, c¢j, nj, pi are as in (1).
Generally, let us consider a resolvable problem
min  y (%4,
st. zflze, (8)

where Xk, Y« 2« and ¢ are as in (4). The only difference is that in Z there exists a minimal
element zo, but a maximal element zj< ¢ has a solution, j=1,...,k And
Sj={..<x@<xM}, 1,2,..., k (9)
For (7), select positive integers my, ..., Mk large enough. Let s;={0<...<m;-1

< mj}, y1(Xq) = f1(xy) = C1x4, YolXd = fa(y1, X2) = Y1 + CaXay « . Vi (KW = felyko1, X) =

Yt + Ck Xki Z1(Xg) = (1 - (1 - pO)*N), 22 = 2,(1 - (1- pp)*?)

(1-(1-p2) ="

1
zZv= zea{t - (1 - p)*) =, Then (7) is an example of (8).
(1-(1-pw)

We point out that (8) is another form of the more general optimization model (4). Let
= {xi(") 4 x(® 4 ... }be an ordered set with ordering 4, i =1, ..., k. Thatis x(u) A
xi(V) if and only if x;(U) > xi(V). Define a new ordering 4 in Y such that a4b if and only if a >
b. Denote the Y with the new relation & by Y’. Similarly, we get Z*. Thus z, is a maximum
in Z" about the relation 4. Now, the problem (8) gets a new form as follows.
max  y (X«
st. . 4e, (10)
where the sign max is about the new relation £ in Y* and the equality sign is the same with the

original.
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Iheorem 3. The problem (8) is just another form of the still more general optimization model
(4).
Hence, we can use the FGKA solving (8) or (10).

Furthermore, let us look at another optimal design problem

K
min  XCiNi

jm1

s.t. 151(1 '(1 'pi)nl)?- R
it
Kk

ywin; <w,
=1
where wi; is the weight of a part of type i, w is the total weight limit. Other signs are as in
(7).
Generally, we would consider a problem
min yk('fk}.
st z(x=c (12)
2z} < ¢,
where Xx, Y« 2k, C are as in (8), z, € Z, an ordered set with a maximal element z,', and
c'e Z -{z)}.
Theorem 4. The problem
min  yj )
stz Rdzc, i=1,...,m, (13)
Z'S)(IK)SC'i i=1,...,n,
Xk={X1, . .. Xy )€ SqX. .. xSy,
where §;, Y, x;, Xi, yj, all are as in theorem 2, z'im is as zim in theorem 2. The
corresponding gj takes values in the corresponding set Z'; 2 (X)) = gjti)(zj.1(D, x)) is

increasing and takes values in an ordered set Z with minimum z, is a special case of (12).

14
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Proof. Let Zo = 2(V)x ... xZ(M). Define an equivalence relation = among elements of Z, as
follows. For aj, b, e 2Z(), i=1,...,m,(a1,...,am) = (b1, ...bm) if and only if either
(i) aj<ciforsome i=2,...,m and bj < ¢j for some j=2,...,m, or
(i) aj=zciand bj=¢j, i=2,...,m,and aj = by.
Thus we get a collection Z of classes of equivalent elements of Z,. Denote the class including
(C1, .., cm) by ¢, (2K, - .. 2{MfXi])) by 2z, (X«). Define (a1,...am) < (1, ..., bm) if
and only if either
() (@1,...,am) =20 # (by, ..., bm), where z4 is the class whose one of components
2,3,...,m is less than corresponding cj, or
(i) 2o # (@1, ..., am) or (by, ..., bm), where ajy < by.
Then Z is an ordered set with a minimum z,. Similarly, let Z,' = Z(1)x ... xZ(n). Define an
equivalence relation = among elements of Z,' as follows. For aj, bje Z(), i=1,...,n,
(a1, ...an)= (b1, ...Dby) if and only if either
(i) ai>ciforsome i=2,...,n and by > ¢ for some j=2,...,n,or
(i) aj<c, bj<g, i=2,...,n, and ay = by.
Hence we get a collection Z' of classes of equivalent elements of Z,. Define the class including
(€1, ....ca) by ¢ and (z, (WX}, ...z (MK by z¢ (K.
Define (a1, ..., am) > (b1, ..., by) if and only if either
() (a1,...,an) =2¢ # (by, ..., bp), where zy' is the class whose one of components
2, ..., n is greather than corresponding ¢;, or
(i) 2o # (a1, ...,an) or(by,...,bn), where ay > by.
Then Z' is an ordered set with a maximal element z'.
Therefore (13) is equivalent to a (12) in which zxe Z, ce Z\{zo}, 2z € Z,

c' € Z\{zo). Thatis, (13) is a special case of (12).

QED.
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